Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Drugs R D ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700808

RESUMEN

BACKGROUND AND OBJECTIVES: Despite significant progress in biomedical research, the rate of success in oncology drug development remains inferior to that of other therapeutic fields. Mechanistic models provide comprehensive understanding of the therapeutic effects of drugs, which is crucial for designing effective clinical trials. This study was performed to acquire a better understanding of PI3K-AKT-TOR pathway modulation and preclinical to clinical translational bridging for a specific compound, apitolisib (PI3K/mTOR inhibitor), by developing integrated mechanistic models. METHODS: Integrated pharmacokinetic (PK)-pharmacodynamic (PD)-efficacy models were developed for xenografts bearing human renal cell adenocarcinoma and for patients with solid tumors (phase 1 studies) to characterize relationships between exposure of apitolisib, modulation of the phosphorylated Akt (pAkt) biomarker triggered by inhibition of the PI3K-AKT-mTOR pathway, and tumor response. RESULTS: Both clinical and preclinical integrated models show a steep sigmoid curve linking pAkt inhibition to tumor growth inhibition and quantified that a minimum of 35-45% pAkt modulation is required for tumor shrinkage in patients, based on platelet-rich plasma surrogate matrix and in xenografts based on tumor tissue matrix. Based on this relationship between targeted pAkt modulation and tumor shrinkage rate, it appeared that a constant pAkt inhibition of 61% and 65%, respectively, would be necessary to achieve tumor stasis in xenografts and patients. CONCLUSIONS: These results help when it comes to evaluating the translatability of the preclinical analysis to the clinical target, and provide information that will enhance the value of future preclinical translational dose-finding and dose-optimization studies to accelerate clinical drug development. TRIAL REGISTRY: ClinicalTrials.gov NCT00854152 and NCT00854126.

2.
J Clin Pharmacol ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38639108

RESUMEN

Cancer remains a significant global health challenge, and despite remarkable advancements in therapeutic strategies, poor tolerability of drugs (causing dose reduction/interruptions) and/or the emergence of drug resistance are major obstacles to successful treatment outcomes. Metastatic renal cell carcinoma (mRCC) accounts for 2% of global cancer diagnoses and deaths. Despite the initial success of targeted therapies in mRCC, challenges remain to overcome drug resistance that limits the long-term efficacy of these treatments. Our analysis aim was to develop a semi-mechanistic longitudinal exposure-tumor growth inhibition model for patients with mRCC to characterize and compare everolimus (mTORC1) and apitolisib's (dual PI3K/mTORC1/2) ability to inhibit tumor growth, and quantitate each drug's efficacy decay caused by emergence of tumor resistance over time. Model-estimated on-treatment tumor growth rate constant was 1.7-fold higher for apitolisib compared to everolimus. Estimated half-life for loss of treatment effect over time for everolimus was 16.1 weeks compared to 7.72 weeks for apitolisib, suggesting a faster rate of tumor re-growth for apitolisib patients likely due to the emergence of resistance. Goodness-of-fit plots including visual predictive check indicated a good model fit and the model was able to capture individual tumor size-time profiles. Based on our knowledge, this is the first clinical report to quantitatively assess everolimus (mTORC1) and apitolisib (PI3K/mTORC1/2) efficacy decay in patients with mRCC. These results highlight the difference in overall efficacy of 2 drugs due to the quantified efficacy decay caused by emergence of resistance, and emphasize the importance of model-informed drug development for targeted cancer therapy.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38629452

RESUMEN

Model-based tumor growth inhibition (TGI) metrics are increasingly used to predict overall survival (OS) data in Phase III immunotherapy clinical trials. However, there is still a lack of understanding regarding the differences between two-stage or joint modeling methods to leverage Phase I/II trial data and help early decision-making. A recent study showed that TGI metrics such as the tumor growth rate constant KG may have good operating characteristics as early endpoints. This previous study used a two-stage approach that is easy to implement and intuitive but prone to bias as it does not account for the relationship between the longitudinal and time-to-event processes. A relevant alternative is to use a joint modeling approach. In the present article, we evaluated the operating characteristics of TGI metrics using joint modeling, assuming an OS model previously developed using historical data. To that end, we used TGI and OS data from IMpower150-a study investigating atezolizumab in over 750 patients suffering from non-small cell lung cancer-to mimic randomized Phase Ib/II trials varying in terms of number of patients included (40 to 15 patients per arm) and follow-up duration (24 to 6 weeks after the last patient included). In this context, joint modeling did not outperform the two-stage approach and provided similar operating characteristics in all the investigated scenarios. Our results suggest that KG geometric mean ratio could be used to support early decision-making provided that 30 or more patients per arm are included and followed for at least 12 weeks.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38465417

RESUMEN

Noncompartmental analysis (NCA) is a model-independent approach for assessing pharmacokinetics (PKs). Although the existing NCA algorithms are very well-established and widely utilized, they suffer from low accuracies in the setting of sparse PK samples. In response, we developed Deep-NCA, a deep learning (DL) model to improve the prediction of key noncompartmental PK parameters. Our methodology utilizes synthetic PK data for model training and uses an innovative patient-specific normalization method for data preprocessing. Deep-NCA demonstrated adequate performance across six previously unseen simulated drugs under multiple dosing, showcasing effective generalization. Compared to traditional NCA, Deep-NCA exhibited superior performance for sparse PK data. This study advances the application of DL to PK studies and introduces an effective method for handling sparse PK data. With further validation and refinement, Deep-NCA could significantly enhance the efficiency of drug development by providing more accurate NCA estimates while requiring fewer PK samples.

5.
Clin Pharmacol Ther ; 115(3): 412-421, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38069528

RESUMEN

The transition from intravenous (i.v.) to subcutaneous (s.c.) administration of biologics is a critical strategy in drug development aimed at improving patient convenience, compliance, and therapeutic outcomes. Focusing on the increasing role of model-informed drug development (MIDD) in the acceleration of this transition, an in-depth overview of the essential clinical pharmacology, and regulatory considerations for successful i.v. to s.c. bridging for biologics after the i.v. formulation has been approved are presented. Considerations encompass multiple aspects beginning with adequate pharmacokinetic (PK) and pharmacodynamic (i.e., exposure-response) evaluations which play a vital role in establishing comparability between the i.v. and s.c. routes of administrations. Selected key recommendations and points to consider include: (i) PK characterization of the s.c. formulation, supported by the increasing preclinical understanding of the s.c. absorption, and robust PK study design and analyses in humans; (ii) a thorough characterization of the exposure-response profiles including important metrics of exposure for both efficacy and safety; (iii) comparability studies designed to meet regulatory considerations and support approval of the s.c. formulation, including noninferiority studies with PK and/or efficacy and safety as primary end points; and (iv) comprehensive safety package addressing assessments of immunogenicity and patients' safety profile with the new route of administration. Recommendations for successful bridging strategies are evolving and MIDD approaches have been used successfully to accelerate the transition to s.c. dosing, ultimately leading to improved patient experiences, adherence, and clinical outcomes.


Asunto(s)
Productos Biológicos , Humanos , Administración Intravenosa
6.
CPT Pharmacometrics Syst Pharmacol ; 13(3): 341-358, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38082557

RESUMEN

GPKPDviz is a Shiny application (app) dedicated to real-time simulation, visualization, and assessment of the pharmacokinetic/pharmacodynamic (PK/PD) models. Within the app, gPKPDviz is capable of generating virtual populations and complex dosing and sampling scenarios, which, together with the streamlined workflow, is designed to efficiently assess the impact of covariates and dosing regimens on PK/PD end points. The actual population data from clinical trials can be loaded into the app for simulation if desired. The app-generated dosing regimens include single or multiple dosing, and more complex regimens, such as loading doses or intermittent dosing. When necessary, the dosing regimens can be defined externally and loaded to the app for simulation. Using mrgsolve as the simulation engine, gPKPDviz is typically used for population simulation, however, with a slight modification of the mrgsolve model, gPKPDviz is capable of performing individual simulations with individual post hoc parameters, individual dosing logs, and individual sampling timepoints through an external dataset. A built-in text editor has a debugging feature for the mrgsolve model, providing the same error messages as model compilation in R. GPKPDviz has had stringent validation by comparing simulation results between the app and using mrgsolve in R. GPKPDviz is a member of the suite of Modeling and Simulation Shiny apps developed at Genentech to facilitate the typical modeling work in Clinical Pharmacology. For broader access to the Pharmacometric community, gPKPDviz has been published as an open-source application in GitHub under the terms of GNU General Public License.


Asunto(s)
Modelos Biológicos , Simulación por Computador
7.
CPT Pharmacometrics Syst Pharmacol ; 13(1): 68-78, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37877248

RESUMEN

Two-stage and joint modeling approaches are the two main approaches to investigate the link between longitudinal tumor size data and overall survival (OS) and anticipate clinical trial outcome. We here used a large database composed of one phase II and five phase III clinical trials evaluating atezolizumab (an immunotherapy) in monotherapy or in combination with chemotherapies in 3699 patients with non-small cell lung cancer to evaluate the differences between both approaches in terms of parameter estimates, magnitude of covariate effects, and ability to predict OS. Although the two-stage approach may underestimate the magnitude of the impact of tumor growth rate (KG ) on OS compared to joint modeling approach (hazard ratios [HRs] of 0.42-2.52 vs. 0.25-2.85, respectively, for individual KG varying from the 5th and 95th percentiles), this difference did not lead into poorer performance of the two-stage approach to describe the OS distribution in the six clinical studies. Overall, two-stage and joint modeling approaches accurately predicted OS HR with a median (range) difference with the observed OS HR of 0.02 (0.01-0.18) and 0.03 (0.00-0.19), in all cases considered, respectively (e.g., for IMpower150: 0.80 [0.66-0.95] vs. 0.82 [0.70-0.95], respectively, whereas the observed OS HR was 0.80). In our setting, the two-stage approach accurately predicted the benefit of atezolizumab on OS. Further work is needed to verify if similar results are achieved using phase Ib or phase II clinical trials where the number of patients and measurements is limited as well as in other cancer indications.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Modelos de Riesgos Proporcionales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico
8.
Clin Pharmacol Ther ; 115(4): 698-709, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-37881133

RESUMEN

The advent of artificial intelligence (AI) in clinical pharmacology and drug development is akin to the dawning of a new era. Previously dismissed as merely technological hype, these approaches have emerged as promising tools in different domains, including health care, demonstrating their potential to empower clinical pharmacology decision making, revolutionize the drug development landscape, and advance patient care. Although challenges remain, the remarkable progress already made signals that the leap from hype to reality is well underway, and AI promises to offer clinical pharmacology new tools and possibilities for optimizing patient care is gradually coming to fruition. This review dives into the burgeoning world of AI and machine learning (ML), showcasing different applications of AI in clinical pharmacology and the impact of successful AI/ML implementation on drug development and/or regulatory decisions. This review also highlights recommendations for areas of opportunity in clinical pharmacology, including data analysis (e.g., handling large data sets, screening to identify important covariates, and optimizing patient population) and efficiencies (e.g., automation, translation, literature curation, and training). Realizing the benefits of AI in drug development and understanding its value will lead to the successful integration of AI tools in our clinical pharmacology and pharmacometrics armamentarium.


Asunto(s)
Inteligencia Artificial , Farmacología Clínica , Humanos , Aprendizaje Automático , Automatización , Toma de Decisiones Clínicas
9.
Clin Pharmacol Ther ; 115(4): 786-794, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38140747

RESUMEN

Natural language processing (NLP) is a branch of artificial intelligence, which combines computational linguistics, machine learning, and deep learning models to process human language. Although there is a surge in NLP usage across various industries in recent years, NLP has not been widely evaluated and utilized to support drug development. To demonstrate how advanced NLP can expedite the extraction and analyses of information to help address clinical pharmacology questions, inform clinical trial designs, and support drug development, three use cases are described in this article: (1) dose optimization strategy in oncology, (2) common covariates on pharmacokinetic (PK) parameters in oncology, and (3) physiologically-based PK (PBPK) analyses for regulatory review and product label. The NLP workflow includes (1) preparation of source files, (2) NLP model building, and (3) automation of data extraction. The Clinical Pharmacology and Biopharmaceutics Summary Basis of Approval (SBA) documents, US package inserts (USPI), and approval letters from the US Food and Drug Administration (FDA) were used as our source data. As demonstrated in the three example use cases, advanced NLP can expedite the extraction and analyses of large amounts of information from regulatory review documents to help address important clinical pharmacology questions. Although this has not been adopted widely, integrating advanced NLP into the clinical pharmacology workflow can increase efficiency in extracting impactful information to advance drug development.


Asunto(s)
Procesamiento de Lenguaje Natural , Farmacología Clínica , Humanos , Inteligencia Artificial , Registros Electrónicos de Salud , Aprendizaje Automático
11.
Clin Transl Sci ; 16(11): 2310-2322, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37718498

RESUMEN

The Mayo Clinical Score is used in clinical trials to describe the clinical status of patients with ulcerative colitis (UC). It comprises four subscores: rectal bleeding (RB), stool frequency (SF), physician's global assessment, and endoscopy (ENDO). According to recent US Food and Drug Administration guidelines (Ulcerative colitis: developing drugs for treatment, Guidance Document, https://www.fda.gov/regulatory-information/s. 2022), clinical response and remission should be based on modified Mayo Score (mMS) relying on RB, SF, and ENDO. Typically, ENDO is performed at the beginning and end of each phase, whereas RB and SF are more frequently available. Item response theory (IRT) models allow the shared information to be used for prediction of all subscores at each observation time; therefore, it leverages information from RB and SF to predict ENDO. A UC disease IRT model was developed based on four etrolizumab phase III studies to describe the longitudinal mMS subscores, placebo response, and remission at the end of induction and maintenance. For each subscore, a bounded integer model was developed. The placebo response was characterized by a mono-exponential function acting on all mMS subscores similarly. The final model reliably predicted longitudinal mMS data. In addition, remission was well-predicted by the model, with only 5% overprediction at the end of induction and 3% underprediction at the end of maintenance. External evaluation of the final model using placebo arms from five different studies indicated adequate performance for both longitudinal mMS subscores and remission status. These results suggest utility of the current disease model for informed decision making in UC clinical development, such as assisting future clinical trial designs and evaluations.


Asunto(s)
Colitis Ulcerosa , Humanos , Colitis Ulcerosa/diagnóstico , Colitis Ulcerosa/tratamiento farmacológico , Recto , Inducción de Remisión , Heces , Efecto Placebo , Hemorragia Gastrointestinal , Resultado del Tratamiento , Método Doble Ciego
12.
Biometrics ; 79(4): 3752-3763, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37498050

RESUMEN

In advanced cancer patients, tumor burden is calculated using the sum of the longest diameters (SLD) of the target lesions, a measure that lumps all lesions together and ignores intra-patient heterogeneity. Here, we used a rich dataset of 342 metastatic bladder cancer patients treated with a novel immunotherapy agent to develop a Bayesian multilevel joint model that can quantify heterogeneity in lesion dynamics and measure their impact on survival. Using a nonlinear model of tumor growth inhibition, we estimated that dynamics differed greatly among lesions, and inter-lesion variability accounted for 21% and 28% of the total variance in tumor shrinkage and treatment effect duration, respectively. Next, we investigated the impact of individual lesion dynamics on survival. Lesions located in the liver and in the bladder had twice as much impact on the instantaneous risk of death compared to those located in the lung or the lymph nodes. Finally, we evaluated the utility of individual lesion follow-up for dynamic predictions. Consistent with results at the population level, the individual lesion model outperformed a model relying only on SLD, especially at early landmark times and in patients with liver or bladder target lesions. Our results show that an individual lesion model can characterize the heterogeneity in tumor dynamics and its impact on survival in advanced cancer patients.


Asunto(s)
Neoplasias , Dinámicas no Lineales , Humanos , Teorema de Bayes , Neoplasias/patología
14.
J Clin Pharmacol ; 63(11): 1210-1220, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37291950

RESUMEN

The port delivery system with ranibizumab (PDS) is designed to continuously deliver ranibizumab to maintain therapeutic drug concentrations in the vitreous of the eye for an extended duration. The PDS has been evaluated for the treatment of neovascular age-related macular degeneration in the Ladder (PDS 10, 40, and 100 mg/mL, with refill exchanges as needed, versus monthly intravitreal ranibizumab 0.5 mg), Archway (PDS 100 mg/mL with 24-week refill exchanges, versus monthly intravitreal ranibizumab 0.5 mg), and ongoing Portal (PDS 100 mg/mL with 24-week refill exchanges) clinical trials. Data from Ladder, Archway, and Portal were used to develop a population pharmacokinetics (PK) model to estimate the ranibizumab release rate from the PDS implant, describe ranibizumab PK in serum and aqueous humor, and predict the concentration in vitreous humor. A model was developed to adequately describe the serum and aqueous humor PK data, as suggested by goodness-of-fit plots as well as visual predictive checks. In the final model, the first-order implant release rate was estimated to be 0.00654 (1/day), corresponding to a half-life of 106 days, consistent with the implant release rate determined in vitro. The model-predicted vitreous concentrations achieved with PDS 100 mg/mL given every 24 weeks were below the intravitreal peak concentration and above the intravitreal trough concentration of ranibizumab over the entire 24-week refill interval. The results demonstrate a durable release of ranibizumab from the PDS with a half-life of 106 days, providing vitreous exposure to ranibizumab for at least 24 weeks that is within the range of exposure for monthly intravitreal treatment.


Asunto(s)
Degeneración Macular , Ranibizumab , Humanos , Ranibizumab/uso terapéutico , Inhibidores de la Angiogénesis/farmacocinética , Inhibidores de la Angiogénesis/uso terapéutico , Anticuerpos Monoclonales Humanizados/farmacocinética , Inyecciones Intravítreas , Degeneración Macular/tratamiento farmacológico
15.
Clin Pharmacol Ther ; 114(3): 644-651, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37212707

RESUMEN

We assess the longitudinal tumor growth inhibition (TGI) metrics and overall survival (OS) predictions applied to patients with advanced biliary tract cancer (BTC) enrolled in IMbrave151 a multicenter randomized phase II, double-blind, placebo-controlled trial evaluating the efficacy and safety of atezolizumab with or without bevacizumab in combination with cisplatin plus gemcitabine. Tumor growth rate (KG) was estimated for patients in IMbrave151. A pre-existing TGI-OS model for patients with hepatocellular carcinoma in IMbrave150 was modified to include available IMbrave151 study covariates and KG estimates and used to simulate IMbrave151 study outcomes. At the interim progression-free survival (PFS) analysis (98 patients, 27 weeks follow-up), clear separation in tumor dynamic profiles with a faster shrinkage rate and slower KG (0.0103 vs. 0.0117 week-1 ; tumor doubling time 67 vs. 59 weeks; KG geometric mean ratio of 0.84) favoring the bevacizumab containing arm was observed. At the first interim analysis for PFS, the simulated OS hazard ratio (HR) 95% prediction interval (PI) of 0.74 (95% PI: 0.58-0.94) offered an early prediction of treatment benefit later confirmed at the final analysis, observed HR of 0.76 based on 159 treated patients and 34 weeks of follow-up. This is the first prospective application of a TGI-OS modeling framework supporting gating of a phase III trial. The findings demonstrate the utility for longitudinal TGI and KG geometric mean ratio as relevant end points in oncology studies to support go/no-go decision making and facilitate interpretation of the IMbrave151 results to support future development efforts for novel therapeutics for patients with advanced BTC.


Asunto(s)
Neoplasias del Sistema Biliar , Neoplasias Hepáticas , Humanos , Bevacizumab/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias del Sistema Biliar/tratamiento farmacológico , Neoplasias del Sistema Biliar/etiología , Neoplasias del Sistema Biliar/patología , Cisplatino/uso terapéutico , Modelos de Riesgos Proporcionales , Toma de Decisiones
16.
CPT Pharmacometrics Syst Pharmacol ; 12(7): 1029-1042, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37101394

RESUMEN

There is strong interest in developing predictive models to better understand individual heterogeneity and disease progression in Alzheimer's disease (AD). We have built upon previous longitudinal AD progression models, using a nonlinear, mixed-effect modeling approach to predict Clinical Dementia Rating Scale - Sum of Boxes (CDR-SB) progression. Data from the Alzheimer's Disease Neuroimaging Initiative (observational study) and placebo arms from four interventional trials (N = 1093) were used for model building. The placebo arms from two additional interventional trials (N = 805) were used for external model validation. In this modeling framework, CDR-SB progression over the disease trajectory timescale was obtained for each participant by estimating disease onset time (DOT). Disease progression following DOT was described by both global progression rate (RATE) and individual progression rate (α). Baseline Mini-Mental State Examination and CDR-SB scores described the interindividual variabilities in DOT and α well. This model successfully predicted outcomes in the external validation datasets, supporting its suitability for prospective prediction and use in design of future trials. By predicting individual participants' disease progression trajectories using baseline characteristics and comparing these against the observed responses to new agents, the model can help assess treatment effects and support decision making for future trials.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/tratamiento farmacológico , Estudios Prospectivos , Pruebas de Estado Mental y Demencia , Proyectos de Investigación , Progresión de la Enfermedad
17.
JCO Clin Cancer Inform ; 7: e2200168, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37116107

RESUMEN

PURPOSE: Hyperglycemia is a major adverse event of phosphatidylinositol 3-kinase/AKT inhibitor class of cancer therapeutics. Machine learning (ML) methodologies can identify and highlight how explanatory variables affect hyperglycemia risk. METHODS: Using data from clinical trials of the AKT inhibitor ipatasertib (IPAT) in the metastatic castrate-resistant prostate cancer setting, we trained an XGBoost ML model to predict the incidence of grade ≥2 hyperglycemia (HGLY ≥ 2). Of the 1,364 patients included in our analysis, 19.4% (n = 265) of patients had HGLY ≥2 events with a median time of first onset of 28 days (range, 0-753 days), and 30.0% (n = 221) of patients on an IPAT regimen had at least one HGLY ≥2 event compared with 7.0% (n = 44) of patients on placebo. RESULTS: An 11-variable XGBoost model predicted HGLY ≥2 events well with an AUROC of 0.83 ± 0.02 (mean ± standard deviation). Using SHapley Additive exPlanations analysis, we found IPAT exposure and baseline HbA1c levels to be the strongest predictors of HGLY ≥2, with additional predictivity of baseline measurements of fasting glucose, magnesium, and high-density lipoproteins. CONCLUSION: The findings support using patients' prediabetic status as a key factor for hyperglycemia monitoring and/or trial exclusion criteria. Additionally, the model and relationships between explanatory variables and HGLY ≥2 described herein can help identify patients at high risk for hyperglycemia and develop rational risk mitigation strategies.


Asunto(s)
Hiperglucemia , Neoplasias de la Próstata , Humanos , Masculino , Hiperglucemia/inducido químicamente , Hiperglucemia/diagnóstico , Aprendizaje Automático , Neoplasias de la Próstata/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt , Factores de Riesgo , Inhibidores de Proteínas Quinasas/uso terapéutico
18.
Clin Transl Sci ; 16(7): 1134-1148, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36908269

RESUMEN

Phase I oncology clinical trials often comprise a limited number of patients representing different disease subtypes who are divided into cohorts receiving treatment(s) at different dosing levels and schedules. Here, we leverage a previously developed quantitative systems pharmacology model of the anti-CD20/CD3 T-cell engaging bispecific antibody, mosunetuzumab, to account for different dosing regimens and patient heterogeneity in the phase I study to inform clinical dose/exposure-response relationships and to identify biological determinants of clinical response. We developed a novel workflow to generate digital twins for each patient, which together form a virtual population (VPOP) that represented variability in biological, pharmacological, and tumor-related parameters from the phase I trial. Simulations based on the VPOP predict that an increase in mosunetuzumab exposure increases the proportion of digital twins with at least a 50% reduction in tumor size by day 42. Simulations also predict a left-shift of the exposure-response in patients diagnosed with indolent compared to aggressive non-Hodgkin's lymphoma (NHL) subtype; this increased sensitivity in indolent NHL was attributed to the lower inferred values of tumor proliferation rate and baseline T-cell infiltration in the corresponding digital twins. Notably, the inferred digital twin parameters from clinical responders and nonresponders show that the potential biological difference that can influence response include tumor parameters (tumor size, proliferation rate, and baseline T-cell infiltration) and parameters defining the effect of mosunetuzumab on T-cell activation and B-cell killing. Finally, the model simulations suggest intratumor expansion of pre-existing T-cells, rather than an influx of systemically expanded T-cells, underlies the antitumor activity of mosunetuzumab.


Asunto(s)
Antineoplásicos , Linfoma no Hodgkin , Humanos , Antineoplásicos/uso terapéutico , Linfoma no Hodgkin/tratamiento farmacológico , Linfocitos T , Linfocitos B , Biomarcadores
19.
Clin Pharmacol Ther ; 114(2): 266-274, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36802040

RESUMEN

Disease progression modeling (DPM) represents an important model-informed drug development framework. The scientific communities support the use of DPM to accelerate and increase efficiency in drug development. This article summarizes International Consortium for Innovation & Quality (IQ) in Pharmaceutical Development mediated survey conducted across multiple biopharmaceutical companies on challenges and opportunities for DPM. Additionally, this summary highlights the viewpoints of IQ from the 2021 workshop hosted by the US Food and Drug Administration (FDA). Sixteen pharmaceutical companies participated in the IQ survey with 36 main questions. The types of questions included single/multiple choice, dichotomous, rank questions, and open-ended or free text. The key results show that DPM has different representation, it encompasses natural disease history, placebo response, standard of care as background therapy, and can even be interpreted as pharmacokinetic/pharmacodynamic modeling. The most common reasons for not implementing DPM as frequently seem to be difficulties in internal cross-functional alignment, lack of knowledge of disease/data, and time constraints. If successfully implemented, DPM can have an impact on dose selection, reduction of sample size, trial read-out support, patient selection/stratification, and supportive evidence for regulatory interactions. The key success factors and key challenges of disease progression models were highlighted in the survey and about 24 case studies across different therapeutic areas were submitted from various survey sponsors. Although DPM is still evolving, its current impact is limited but promising. The success of such models in the future will depend on collaboration, advanced analytics, availability of and access to relevant and adequate-quality data, collaborative regulatory guidance, and published examples of impact.


Asunto(s)
Desarrollo de Medicamentos , Humanos , Preparaciones Farmacéuticas , Predicción , Progresión de la Enfermedad
20.
Br J Cancer ; 129(9): 1383-1388, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765177

RESUMEN

Longitudinal models of biomarkers such as tumour size dynamics capture treatment efficacy and predict treatment outcome (overall survival) of a variety of anticancer therapies, including chemotherapies, targeted therapies, immunotherapies and their combinations. These pharmacological endpoints like tumour dynamic (tumour growth inhibition) metrics have been proposed as alternative endpoints to complement the classical RECIST endpoints (objective response rate, progression-free survival) to support early decisions both at the study level in drug development as well as at the patients level in personalised therapy with checkpoint inhibitors. This perspective paper presents recent developments and future directions to enable wider and robust use of model-based decision frameworks based on pharmacological endpoints.


Asunto(s)
Neoplasias , Medicina de Precisión , Humanos , Neoplasias/tratamiento farmacológico , Biomarcadores , Resultado del Tratamiento , Desarrollo de Medicamentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...